February 13, 2018 Volume 14 Issue 06

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Overhung load adaptors provide load support and contamination protection

Overhung load adaptors (OHLA) provide both overhung radial and axial load support to protect electrified mobile equipment motors from heavy application loads, extending the lifetime of the motor and alleviating the cost of downtime both from maintenance costs and loss of production. They seal out dirt, grime, and other contaminants too. Zero-Max OHLAs are available in an extensive offering of standard models (including Extra-Duty options) for typical applications or customized designs.
Learn more.


Why choose electric for linear actuators?

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Get this informative e-book. (No registration required)


New AC hypoid inverter-duty gearmotors

Bodine Electric Company introduces 12 new AC inverter-duty hypoid hollow shaft gearmotors. These type 42R-25H2 and 42R-30H3 drives combine an all-new AC inverter-duty, 230/460-VAC motor with two hypoid gearheads. When used with an AC inverter (VFD) control, these units deliver maintenance-free and reliable high-torque output. They are ideal for conveyors, gates, packaging, and other industrial automation equipment that demands both high torque and low power consumption from the driving gearmotor.
Learn more.


Next-gen warehouse automation: Siemens, Universal Robots, and Zivid partner up

Universal Robots, Siemens, and Zivid have created a new solution combining UR's cobot arms with Siemens' SIMATIC Robot Pick AI software and Zivid's 3D sensors to create a deep-learning picking solution for warehouse automation and intra-logistics fulfillment. It works regardless of object shape, size, opacity, or transparency and is a significant leap in solving the complex challenges faced by the logistics and e-commerce sectors.
Read the full article.


Innovative DuoDrive gear and motor unit is UL/CSA certified

The DuoDrive integrated gear unit and motor from NORD DRIVE-SYSTEMS is a compact, high-efficiency solution engineered for users in the fields of intralogistics, pharmaceutical, and the food and beverage industries. This drive combines a IE5+ synchronous motor and single-stage helical gear unit into one compact housing with a smooth, easy-to-clean surface. It has a system efficiency up to 92% and is available in two case sizes with a power range of 0.5 to 4.0 hp.
Learn more.


BLDC flat motor with high output torque and speed reduction

Portescap's 60ECF brushless DC slotted flat motor is the newest frame size to join its flat motor portfolio. This 60-mm BLDC motor features a 38.2-mm body length and an outer-rotor slotted configuration with an open-body design, allowing it to deliver improved heat management in a compact package. Combined with Portescap gearheads, it delivers extremely high output torque and speed reduction. Available in both sensored and sensorless options. A great choice for applications such as electric grippers and exoskeletons, eVTOLs, and surgical robots.
Learn more and view all the specs.


Application story: Complete gearbox and coupling assembly for actuator system

Learn how GAM engineers not only sized and selected the appropriate gear reducers and couplings required to drive two ball screws in unison using a single motor, but how they also designed the mounting adapters necessary to complete the system. One-stop shopping eliminated unnecessary components and resulted in a 15% reduction in system cost.
Read this informative GAM blog.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


Telescoping linear actuators for space-constrained applications

Rollon's new TLS telescoping linear actuators enable long stroke lengths with minimal closed lengths, which is especially good for applications with minimal vertical clearance. These actuators integrate seamlessly into multi-axis systems and are available in two- or three-stage versions. Equipped with a built-in automated lubrication system, the TLS Series features a synchronized drive system, requiring only a single motor to achieve motion. Four sizes (100, 230, 280, and 360) with up to 3,000-mm stroke length.
Learn more.


Competitively priced long-stroke parallel gripper

The DHPL from Festo is a new generation of pneumatic long-stroke grippers that offers a host of advantages for high-load and high-torque applications. It is interchangeable with competitive long-stroke grippers and provides the added benefits of lighter weight, higher precision, and no maintenance. It is ideal for gripping larger items, including stacking boxes, gripping shaped parts, and keeping bags open. It has high repetition accuracy due to three rugged guide rods and a rack-and-pinion design.
Learn more.


Extend your range of motion: Controllers for mini motors

FAULHABER has added another extremely compact Motion Controller without housing to its product range. The new MC3603 controller is ideal for integration in equipment manufacturing and medical tech applications. With 36 V and 3 A (peak current 9 A), it covers the power range up to 100 W and is suitable for DC motors with encoder, brushless drives, or linear motors.
Learn more.


When is a frameless brushless DC motor the right choice?

Frameless BLDC motors fit easily into small, compact machines that require high precision, high torque, and high efficiency, such as robotic applications where a mix of low weight and inertia is critical. Learn from the experts at SDP/SI how these motors can replace heavier, less efficient hydraulic components by decreasing operating and maintenance costs. These motors are also more environmentally friendly than others.
View the video.


Tiny and smart: Step motor with closed-loop control

Nanotec's new PD1-C step motor features an integrated controller and absolute encoder with closed-loop control. With a flange size of merely 28 mm (NEMA 11), this compact motor reaches a max holding torque of 18 Ncm and a peak current of 3 A. Three motor versions are available: IP20 protection, IP65 protection, and a motor with open housing that can be modified with custom connectors. Ideal for applications with space constraints, effectively reducing both wiring complexity and installation costs.
Learn more.


Closed loop steppers drive new motion control applications

According to the motion experts at Performance Motion Devices, when it comes to step motors, the drive technique called closed loop stepper is making everything old new again and driving a burst of interest in the use of two-phase step motors. It's "winning back machine designers who may have relegated step motors to the category of low cost but low performance."
Read this informative Performance Motion Devices article.


Intelligent compact drives with extended fieldbus options

The intelligent PD6 compact drives from Nanotec are now available with Profinet and EtherNet/IP. They combine motor, controller, and encoder in a space-saving package. With its 80-mm flange and a rated power of 942 W, the PD6-EB is the most powerful brushless DC motor of this product family. The stepper motor version has an 86-mm flange (NEMA 34) and a holding torque up to 10 Nm. Features include acceleration feed forward and jerk-limited ramps. Reduced installation time and wiring make the PD6 series a highly profitable choice for machine tools, packaging machines, or conveyor belts.
Learn more.


Too much of a good thing? Penn State aerospace engineers to investigate overtrusting autonomous vehicles

Alan Wagner (second from left), assistant professor of aerospace engineering at Penn State, has received funding from the Air Force Office of Scientific Research to investigate the factors that cause overtrust in autonomous vehicles and robots, and to develop techniques that will allow autonomous systems to recognize it and prevent it. [Credit: Penn State]

 

 

 

 

Overtrust frequently occurs with autonomous vehicles and robots -- and it can have serious physical, and even fatal, consequences for humans in both the military and society, but Alan Wagner, assistant professor of aerospace engineering at Penn State, is investigating the factors that cause overtrust, and developing techniques that will allow autonomous systems to recognize it and prevent it, thanks to funding from the Air Force Office of Scientific Research (AFOSR).

Wagner, who is also affiliated with the Penn State Rock Ethics Institute, is the principal investigator (PI) on the three-year, $762,000 proposal titled, "Developing Human Machine Systems That Actively Calibrate a User's Trust." Ayanna Howard, professor and Linda J. and Mark C. Smith Endowed Chair in Bioengineering in the School of Electrical and Computer Engineering at the Georgia Institute of Technology, is the co-PI.

"Many aspects of trust in autonomous systems are not well understood, and overtrust in them poses serious and numerous risks," said Wagner. "The tendency of humans to put too much faith in these systems is an important and significant problem that will directly impact the adoption and uses of autonomous systems, both by the military and civilians, in the near future."

Trust plays a critical role in many aspects of Air Force operations and U.S. Department of Defense missions. From the analysis of intelligence to the control of unmanned aerial vehicles (UAVs), Air Force operators must not only trust the systems with which they will work, but the systems must strive to retain the operator's trust without contributing to overtrust by the operator.

To better understand overtrust, Wagner will employ theoretical and experimental research methods in both virtual and live environments. The theoretical aspects of the project will contribute important conceptual insight toward the understanding of the social phenomena of trust itself. This scientific insight will provide the Air Force with the conceptual underpinnings necessary to examine many different scenarios and situations from the perspective of trust for future operations and missions.

The experimental aspects of the project will be relevant for the development of robots and automated systems with greater social awareness. This increased awareness will allow a machine to consider the impact of its actions on its relationship with a human, an operator's trust with the system, and other mission objectives before performing an action.

"Autonomous systems are being considered to automatically land military helicopters," said Wagner. "Such systems may help during landings in deserts because of the sand that kicks up and impairs pilot visibility. But we must be vigilant to prevent overtrust of such systems, which could lead to situations in which pilots fail to monitor the landing process or eventually lose the skill to land altogether."

It is not currently clear whether the tendency for an operator to overtrust is related to individual-specific factors such as age, experience, personality, mood, or environmental factors such as location or situational risk; therefore, the research will investigate the potential precursors to overtrust in an attempt to identify those individuals and/or situations which are most likely to put people at risk of trusting an autonomous vehicle or robot too much.

Findings from the research could have an impact on military operations such as autonomous vehicles refueling fighter jets in flight, and quadcopters being used to deliver large, heavy payloads into hard-to-reach territories.

The results of the research could also affect the development and adoption of commercial aircraft that are fully autonomous or rely on autonomous systems for operation.

"Individuals often believe that a machine is smarter than they are -- that it's unlikely to fail, will never fail, or that the people who created the machine would never have allowed it to fail -- and that is very risky," said Wagner. "Most people trust the GPS systems in their cars, but how would they feel if they were riding in an autonomous air taxi or in a commercial aircraft that was being refueled in flight by an autonomous refueling vehicle?"

Wagner's AFOSR award is a follow-up to his previous Air Force Young Investigator Award that he received to develop a method to computationally represent and reason about trust. The goal of the Young Investigator Award was to support research into understanding how trust in autonomous systems develops and how to create methods to repair that trust. For this work, Wagner created robots that apologized when they made a mistake, or promised to do better. The research findings demonstrated that a robot's apologies and promises repaired trust but only when they occurred at the right time. This work is already helping to inform and shape the field of human-machine interaction in the aerospace industry and in other domains developing autonomous systems.

Source: Penn State College of Engineering

Published February 2018

Rate this article

[Too much of a good thing? Penn State aerospace engineers to investigate overtrusting autonomous vehicles]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2018 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy